Usage Pattern Recognition in Student Activities
نویسندگان
چکیده
This paper presents an approach of collecting contextualized attention metadata combined from inside as well as outside a LMS and analyzing them to create feedback about the student activities for the teaching staff. Two types of analyses were run on the collected data: first, key actions were extracted to identify usage patterns and tendencies throughout the whole course and then usage statistics and patterns were identified for some key actions in more detail. Results of both analyses were visualized and presented to the teaching staff for evaluation.
منابع مشابه
Machine learning based Visual Evoked Potential (VEP) Signals Recognition
Introduction: Visual evoked potentials contain certain diagnostic information which have proved to be of importance in the visual systems functional integrity. Due to substantial decrease of amplitude in extra macular stimulation in commonly used pattern VEPs, differentiating normal and abnormal signals can prove to be quite an obstacle. Due to developments of use of machine l...
متن کاملRecognizing Human Activities Based on Wearable Inertial Measurements
Inertial sensors are devices that measure movement, and therefore, when they are attached to a body, they can be used to measure human movements. In this thesis, data from these sensors are studied to recognize human activities user-independently. This is possible if the following two hypotheses are valid: firstly, as human movements are dissimilar between activities, also inertial sensor data ...
متن کاملA Differential Approach for Identifying Important Student Learning Behavior Patterns with Evolving Usage over Time
Effective design and improvement of dynamic feedback in computer-based learning environments requires the ability to assess the effectiveness of a variety of feedback options, not only in terms of overall performance and learning, but also in terms of more subtle effects on students’ learning behavior and understanding. In this paper, we present a novel interestingness measure, and correspondin...
متن کاملA Review on Radio Based Activity Recognition
Recognizing human activities in their daily living enables the development and widely usage of human-centric applications, such as health monitoring, assisted living, etc. Traditional activity recognition methods often rely on physical sensors (camera, accelerometer, gyroscope, etc.) to continuously collect sensor readings, and utilize pattern recognition algorithms to identify user's activitie...
متن کاملClassifier Ensemble Framework: a Diversity Based Approach
Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...
متن کامل